If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+65x-1500=0
a = 1; b = 65; c = -1500;
Δ = b2-4ac
Δ = 652-4·1·(-1500)
Δ = 10225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10225}=\sqrt{25*409}=\sqrt{25}*\sqrt{409}=5\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-5\sqrt{409}}{2*1}=\frac{-65-5\sqrt{409}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+5\sqrt{409}}{2*1}=\frac{-65+5\sqrt{409}}{2} $
| 21m-1=13m | | 21j-26+4j=+6-2j | | 5x+10=26×x | | x+5/6-x+1/9=x+2/4 | | 2b–10=18 | | 6–5d=21 | | x^2+2^0.5x-1=0 | | k-2/k+3=4/9 | | 86=5+3(t+2) | | x+۱۵=۳۵ | | a-3=a/2+a/3 | | 2x+3/5=2/5x+3 | | 3(a4)+2a=18 | | 3(a4)+2a=18. | | 7(5-6z)=11(5-4z) | | (4y+6)+(20y−11)+(7y−7)=360 | | 7x-12=13-5x-5 | | 70(b)=10(B) | | Y=0,7x+3 | | 2x-4=7-8x | | 2x+11=91 | | 2x^2-6x+x^2-x=50 | | 8x(1.5)=245 | | 2x-3=1/5 | | 9/4=y10 | | 4(n+6)=88 | | 18/(x+3)=8/(x-3) | | 18/x+3=8/x-3 | | 3÷11+x=9÷11 | | 75.0=6a+15 | | -2p²+7p+64=0 | | -15+8i=0 |